These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-455-3p reduces apoptosis and alleviates degeneration of chondrocyte through regulating PI3K/AKT pathway. Author: Wen X, Li H, Sun H, Zeng A, Lin R, Zhao J, Zhang Z. Journal: Life Sci; 2020 Jul 15; 253():117718. PubMed ID: 32343998. Abstract: AIMS: This study aimed to explore the functions of miR-455-3p, PTEN, and PI3K/AKT pathway in osteoarthritis. MATERIALS AND METHODS: We used the human bone marrow stem cell (BMSC), healthy chondrocytes, osteoarthritis chondrocytes (OA), and the IL-1β/TNF-α-treated chondrocyte model to explore the relationship between miR-455-3p and PTEN. Mimic or inhibitor was used to transfect chondrocytes to determine whether miR-455-3p can regulate PTEN and influence COL2A1 and MMP13. Apoptosis was detected by flow cytometry. A luciferase report was applied to verify the targeted binding. KO mice were applied to investigate PTEN and pAKT expression and the effect on chondrocytes in vivo. KEY FINDINGS: MiR-455-3p and PTEN were reverse in chondrogenesis and healthy cartilage versus OA cartilage. Similar trends were noted in IL-1β model. PTEN and MMP13 decreased and COL2A1 increased after overexpressing miR-455-3p, whereas the inhibition showed opposite results. Flow cytometry showed that miR-455-3p could reduce the apoptosis of chondrocytes. The results of luciferase revealed that miR-455-3p could affect fluorescence activity of PTEN by targeting its 3'-UTR. Finally, we found a marked increased in the expression of PTEN in KO mice relative to WT mice, while pAKT levels decreased. SIGNIFICANCE: It can be supported that miR-455-3p can reduce the apoptosis of chondrocytes and alleviate OA through regulating PI3K/AKT pathway, which may be expected to be a target for the treatment of osteoarthritis.[Abstract] [Full Text] [Related] [New Search]