These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anti-Obesity Effects of Tanshinone I from Salvia miltiorrhiza Bunge in Mice Fed a High-Fat Diet through Inhibition of Early Adipogenesis. Author: Jung DY, Kim JH, Jung MH. Journal: Nutrients; 2020 Apr 27; 12(5):. PubMed ID: 32349456. Abstract: Tanshinone I (Tan I) is a diterpenoid isolated from Salvia miltiorrhiza Bunge and exhibits antitumor effects in several cancers. However, the anti-obesity properties of Tan I remain unexplored. Here, we evaluated the anti-obesity effects of Tan I in high-fat-diet (HFD)-induced obese mice and investigated the underlying molecular mechanisms in 3T3-L1 cells. HFD-induced obese mice were orally administrated Tan I for eight weeks, and body weight, weight gain, hematoxylin and eosin staining and serum biological parameters were examined. The adipogenesis of 3T3-L1 preadipocytes was assessed using Oil Red O staining and measurement of intracellular triglyceride (TG) levels, and mitotic clonal expansion (MCE) and its related signal molecules were analyzed during early adipogenesis of 3T3-L1 cells. The administration of Tan I significantly reduced body weight, weight gain, and white adipocyte size, and improved obesity-induced serum levels of glucose, free fatty acid, total TG, and total cholesterol in vivo in HFD-induced obese mice. Furthermore, Tan I-administered mice demonstrated improvement of glucose metabolism and insulin sensitivity. Treatment with Tan I inhibited the adipogenesis of 3T3-L1 preadipocytes in vitro, with this inhibition mainly occurring at an early phase of adipogenesis through the attenuation of MCE via cell cycle arrest at the G1/S phase transition. Tan I inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Akt during the process of MCE, while it stimulated the phosphorylation of AMP-activated protein kinase. Furthermore, Tan I repressed the expression of CCAAT-enhancer-binding protein β (C/EBPβ), histone H3K9 demethylase JMJD2B, and subsequently cell cycle genes. Moreover, Tan I regulated the expression of early adipogenic transcription factors including GATAs and Kruppel-like factor family factors. These results indicate that Tan I prevents HFD-induced obesity via the inhibition of early adipogenesis, and thus improves glucose metabolism and insulin sensitivity. This suggests that Tan I possesses therapeutic potential for the treatment of obesity and obesity-related diseases.[Abstract] [Full Text] [Related] [New Search]