These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultra-highly sensitive organophosphorus biosensor based on chitosan/tin disulfide and British housefly acetylcholinesterase.
    Author: Liu X, Sakthivel R, Liu WC, Huang CW, Li J, Xu C, Wu Y, Song L, He W, Chung RJ.
    Journal: Food Chem; 2020 Sep 15; 324():126889. PubMed ID: 32353659.
    Abstract:
    Pesticides have been extensively applied worldwide to protect crops from worms and insects; however, the continuous use of pesticides affects ecosystems, agricultural product safety, nontarget organisms, and human health. In this paper, we report a highly sensitive biosensor for the determination of pesticides based on tin sulfide (SnS2) and chitosan (CHIT) nanocomposites decorated with a unique British housefly acetylcholinesterase (AChE). The hydrothermally synthesized nano-SnS2 mixed with chitosan solution (CHIT-SnS2) was drop-casted onto a glassy carbon electrode (GCE). Subsequently, the British housefly AChE was immobilized on the CHIT/SnS2-coated GCE that was then employed for pesticide detection. The developed biosensor showed an ultra-high sensitivity and wide linear detection range from 0.02 nM to 20000 nM with a detection limit of 0.02 nM for the detection of chlorpyrifos as the model pesticide. Furthermore, the AChE/CHIT-SnS2/GCE exhibited acceptable storage stability, good reproducibility, and selectivity.
    [Abstract] [Full Text] [Related] [New Search]