These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential patterns of pathology in and interaction between joint tissues in long-term osteoarthritis with different initiating causes: phenotype matters. Author: Zaki S, Smith MM, Smith SM, Little CB. Journal: Osteoarthritis Cartilage; 2020 Jul; 28(7):953-965. PubMed ID: 32360537. Abstract: OBJECTIVE: To determine if osteoarthritis (OA) progression and joint tissue-pathology associations link specific animal models to different human OA phenotypes. DESIGN: Male 11-week-old C57BL6 mice had unilateral medial-meniscal-destabilization (DMM) or antigen-induced-arthritis (AIA). Joint tissue histopathology was scored day-3 to week-16. Tissue-pathology associations (corrected for time and at week-16) were determined by partial correlation coefficients, and odds ratios (OR) calculated for likelihood of cartilage damage and joint inflammation by ordinal-logistic-regression. RESULTS: Despite distinct temporal patterns of progression, by week-16 joint-wide OA pathology in DMM and AIA was equivalent. Significant pathology associations common to both models included: osteophyte size and maturity (r > 0.4); subchondral bone (SCB) sclerosis and osteophyte maturity (r > 0.25); cartilage erosion and chondrocyte hypertrophy/apoptosis (r > 0.4), SCB sclerosis (r > 0.26), osteophyte size (r > 0.3), and maturity (r > 0.32). DMM-specific associations were between cartilage proteoglycan loss and structural damage (r = 0.56), osteophyte maturity (r = 0.49), size (r = 0.45), and SCB sclerosis (r = 0.28). AIA-specific associations were between SCB sclerosis and chondrocyte hypertrophy/apoptosis (r = 0.40) and osteophyte size (r = 0.37); and synovitis with cartilage structural damage (r = 0.18). No tissue-pathology associations were common to both models at week-16. Increased likelihood of cartilage structural damage was associated with: chondrocyte hypertrophy/apoptosis (OR>1.7), and osteophyte size (OR>2.3) in both models; SCB sclerosis (OR = 2.0) and proteoglycan loss (OR = 2.4) in DMM; and synovitis (OR = 1.2) in AIA. Joint inflammation was associated positively with cartilage proteoglycan loss (OR = 1.4) and inversely with osteophyte size (OR = 0.21) in AIA only. CONCLUSION: This study highlights the importance of defining OA-models by initiating mechanisms and progression, not just end-stage joint-tissue pathology.[Abstract] [Full Text] [Related] [New Search]