These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-Glycans on EGF domain-specific O-GlcNAc transferase (EOGT) facilitate EOGT maturation and peripheral endoplasmic reticulum localization.
    Author: Alam SMD, Tsukamoto Y, Ogawa M, Senoo Y, Ikeda K, Tashima Y, Takeuchi H, Okajima T.
    Journal: J Biol Chem; 2020 Jun 19; 295(25):8560-8574. PubMed ID: 32376684.
    Abstract:
    Epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT) is an endoplasmic reticulum (ER)-resident protein that modifies EGF repeats of Notch receptors and thereby regulates Delta-like ligand-mediated Notch signaling. Several EOGT mutations that may affect putative N-glycosylation consensus sites are recorded in the cancer database, but the presence and function of N-glycans in EOGT have not yet been characterized. Here, we identified N-glycosylation sites in mouse EOGT and elucidated their molecular functions. Three predicted N-glycosylation consensus sequences on EOGT are highly conserved among mammalian species. Within these sites, we found that Asn-263 and Asn-354, but not Asn-493, are modified with N-glycans. Lectin blotting, endoglycosidase H digestion, and MS analysis revealed that both residues are modified with oligomannose N-glycans. Loss of an individual N-glycan on EOGT did not affect its endoplasmic reticulum (ER) localization, enzyme activity, and ability to O-GlcNAcylate Notch1 in HEK293T cells. However, simultaneous substitution of both N-glycosylation sites affected both EOGT maturation and expression levels without an apparent change in enzymatic activity, suggesting that N-glycosylation at a single site is sufficient for EOGT maturation and expression. Accordingly, a decrease in O-GlcNAc stoichiometry was observed in Notch1 co-expressed with an N263Q/N354Q variant compared with WT EOGT. Moreover, the N263Q/N354Q variant exhibited altered subcellular distribution within the ER in HEK293T cells, indicating that N-glycosylation of EOGT is required for its ER localization at the cell periphery. These results suggest critical roles of N-glycans in sustaining O-GlcNAc transferase function both by maintaining EOGT levels and by ensuring its proper subcellular localization in the ER.
    [Abstract] [Full Text] [Related] [New Search]