These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-Dose Interleukin-2 Combined With Rapamycin Led to an Expansion of CD4+CD25+FOXP3+ Regulatory T Cells and Prolonged Human Islet Allograft Survival in Humanized Mice.
    Author: Hu M, Hawthorne WJ, Nicholson L, Burns H, Qian YW, Liuwantara D, Jimenez Vera E, Chew YV, Williams L, Yi S, Keung K, Watson D, Rogers N, Alexander SI, O'Connell PJ.
    Journal: Diabetes; 2020 Aug; 69(8):1735-1748. PubMed ID: 32381646.
    Abstract:
    Islet transplantation is an emerging therapy for type 1 diabetes and hypoglycemic unawareness. However, a key challenge for islet transplantation is cellular rejection and the requirement for long-term immunosuppression. In this study, we established a diabetic humanized NOD-scidIL2Rγnull (NSG) mouse model of T-cell-mediated human islet allograft rejection and developed a therapeutic regimen of low-dose recombinant human interleukin-2 (IL-2) combined with low-dose rapamycin to prolong graft survival. NSG mice that had received renal subcapsular human islet allografts and were transfused with 1 × 107 of human spleen mononuclear cells reconstituted human CD45+ cells that were predominantly CD3+ T cells and rejected their grafts with a median survival time of 27 days. IL-2 alone (0.3 × 106 IU/m2 or 1 × 106 IU/m2) or rapamycin alone (0.5-1 mg/kg) for 3 weeks did not prolong survival. However, the combination of rapamycin with IL-2 for 3 weeks significantly prolonged human islet allograft survival. Graft survival was associated with expansion of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and enhanced transforming growth factor-β production by CD4+ T cells. CD8+ T cells showed reduced interferon-γ production and reduced expression of perforin-1. The combination of IL-2 and rapamycin has the potential to inhibit human islet allograft rejection by expanding CD4+FOXP3+ Tregs in vivo and suppressing effector cell function and could be the basis of effective tolerance-based regimens.
    [Abstract] [Full Text] [Related] [New Search]