These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cigarette smoke exposure impairs lipid metabolism by decreasing low-density lipoprotein receptor expression in hepatocytes.
    Author: Ma B, Chen Y, Wang X, Zhang R, Niu S, Ni L, Di X, Han Q, Liu C.
    Journal: Lipids Health Dis; 2020 May 08; 19(1):88. PubMed ID: 32384892.
    Abstract:
    BACKGROUND: Cigarette smoke (CS) exposure impairs serum lipid profiles and the function of vascular endothelial cells, which accelerates the atherosclerosis. However, the precise mechanism and effect on the expression of low-density lipoprotein receptor (LDLR) in the liver by CS exposure is still unclear. METHODS: In this study, adult male C57BL/6 J mice were divided into three groups, with one group being exposed to CS for 6 weeks. HepG2 cells were treated with CS extract at concentrations of 1, 2.5, 5, and 10%. RESULTS: The serum levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) for the CS-exposure group were significantly higher than those in the control group (P < 0.05). Moreover, CS exposure decreased the LDLR expression in the hepatocytes and promoted inflammation in the blood vessel walls. Melatonin was intraperitoneally injected at 10 mg/kg/d for 6 weeks alongside CS exposure, and this significantly decreased the levels of TC, TGs, and LDL-C and decreased the expression of intercellular adhesion molecule-1 and the infiltration of cluster determinant 68-cells. In vitro, CS extract prepared by bubbling CS through phosphate-buffered saline decreased the LDLR expression in HepG2 cells in a time- and concentration-dependent manner, and this effect was prevented by pretreatment with 100 μM melatonin. CONCLUSIONS: In conclusion, CS exposure impaired lipid metabolism and decreased LDLR expression in hepatocytes, and these effects could be prevented by melatonin supplementation. These findings implied that melatonin has the potential therapeutic applicability in the prevention of lipid metabolic disorder in smokers.
    [Abstract] [Full Text] [Related] [New Search]