These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Indole alkaloids from leaves of Alstonia scholaris (L.) R. Br. protect against emphysema in mice. Author: Zhao YL, Yang ZF, Wu BF, Shang JH, Liu YP, Wang XH, Luo XD. Journal: J Ethnopharmacol; 2020 Sep 15; 259():112949. PubMed ID: 32387234. Abstract: ETHNOPHARMACOLOGICAL RELEVANCE: Alstonia scholaris (L.) R. Br. (Apocynaceae) is a medicinal plant in China traditionally used to treat pulmonary diseases, including bronchitis, whooping cough, asthma and chronic obstructive pulmonary disease. AIM OF THE STUDY: To provide experimental data supporting clinical adaptation of total indole alkaloids ( TA) from A. scholaris leaves for treating emphysema. MATERIALS AND METHODS: An emphysema model was induced by a single intratracheal instillation of porcine pancreatic elastase followed by administration of TA and four main alkaloid components (scholaricine, 19-epischolaricine, vallesamine, and picrinine) for 30 consecutive days. Cytokine levels, histopathological parameters and protein expression in lung tissues were examined. RESULTS: Administering the TA, picrinine, scholaricine, 19-epischolaricine and vallesamine for 30 days effectively inhibited inflammatory cell accumulation and invasion in the lung tissue and relieved pulmonary tissue injury. Oxygen saturation was enhanced, and interleukin (IL)-1β, monocyte-chemo attractive peptide 1, IL-11, matrix metalloproteinase-12, transforming growth factor-β and vascular endothelial growth factor levels were significantly reduced, likely by suppressing overactivation of alveolar macrophages and pulmonary fibrosis. The elastin content was markedly elevated, and fibronectin was reduced. Bcl-2 expression was significantly increased, and nuclear factor-κB and β-catenin levels were decreased. CONCLUSIONS: TA can be potentially used as an effective novel drug for pulmonary emphysema and exerts its effects through not only inhibiting inflammation of the airway wall and airflow resistance but also promoting lung elastic recoil and protease/anti-protease balance.[Abstract] [Full Text] [Related] [New Search]