These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GC-MS-based metabolomics research on the anti-hyperlipidaemic activity of Prunella vulgaris L. polysaccharides. Author: Zhang Z, Zhou Y, Lin Y, Li Y, Xia B, Lin L, Liao D. Journal: Int J Biol Macromol; 2020 Sep 15; 159():461-473. PubMed ID: 32387363. Abstract: Prunella vulgaris polysaccharides (PVPs) have a variety of biological activities, but the mechanism and extent of their anti-hyperlipidaemic effect remain unclear. In vitro, PVPs had a significant inhibitory effect on angiotensin (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation. A metabolomics approach based on gas chromatography-mass spectrometry (GC-MS) and chemometrics was established in this study to evaluate the anti-hyperlipidaemic activity of PVPs in a high-fat Sprague-Dawley rat model. In vivo, PVPs could significantly reduce the weight gain and the increases in serum total cholesterol (TC), low-density lipoprotein (LDL)-C and non-high-density lipoprotein (HDL)-C levels observed in rats fed a high-fat diet; they could also significantly increase serum GSH-Px activity, reduce the content of MDA and TNF-α and decrease abdominal fat volume in rats. Furthermore, PVPs exerted a repairing effect on morphological and structural damage in liver tissue cells in hyperlipidaemic rats fed a high-fat diet. PVPs improved lipid metabolism disorder in rats. Alanine, threonine, succinic acid, proline, inositol and arachidonic acid levels in the serum were considered potential biomarkers involved in amino acid, glucose, energy and lipid metabolism. Therefore, PVPs may interfere with hyperlipidaemia through anti-lipid peroxidation effects, attenuation of inflammation and regulation of glucose, amino acid, energy and lipid metabolism.[Abstract] [Full Text] [Related] [New Search]