These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enteric methane, lactation performances, digestibility, and metabolism of nitrogen and energy of Holsteins and Jerseys fed 2 levels of forage fiber from alfalfa silage or corn silage.
    Author: Uddin ME, Santana OI, Weigel KA, Wattiaux MA.
    Journal: J Dairy Sci; 2020 Jul; 103(7):6087-6099. PubMed ID: 32389470.
    Abstract:
    Our objective was to determine the effects of replacing alfalfa silage (AS) neutral detergent fiber (NDF) with corn silage (CS) NDF at 2 levels of forage NDF (FNDF) on enteric methane (CH4), lactation performance, ruminal fluid characteristics, digestibility, and metabolism of N and energy in Holstein and Jersey cows. Twelve Holstein and 12 Jersey cows (all primiparous and mid-lactation) were used in a triplicated split-plot 4 × 4 Latin square experiment, where breed and diet formed the main and subplots, respectively. The 4 iso-nitrogenous and iso-starch dietary treatments were arranged as a 2 × 2 factorial with 2 levels of FNDF [19 (low FNDF, LF) and 24% (high FNDF, HF) of dry matter] and 2 sources of FNDF (70:30 and 30:70 ratio of AS NDF to CS NDF). Soyhull (non-forage NDF) and corn grain were respectively used to keep dietary NDF and starch content similar across diets. Total collection of feces and urine over 3 d was performed on 8 cows (1 Latin square from each breed). The difference in dry matter intake (DMI) between Holsteins and Jerseys was greater when fed AS than CS. Compared with Jerseys, Holstein cows had greater body weight (48%), DMI (34%), fat- and protein-corrected milk (FPCM; 31%) and CH4 production (22%; 471 vs. 385 g/d). However, breed did not affect CH4 intensity (g/kg of FPCM) or yield (g/kg of DMI), nutrient digestibility, and N partitioning. Compared with HF, LF-fed cows had greater DMI (10%), N intake (8%), and FPCM (5%), but they were 5% less efficient (both FPCM/DMI and milk N/intake N). Compared with HF, LF-fed cows excreted 11 and 17% less urinary N (g/d and % of N intake, respectively). In spite of lower (2.5%) acetate and higher (10%) propionate (mol/100 mol ruminal volatile fatty acids) LF-fed cows had greater (6%) CH4 production (g/d) than did HF-fed cows, most likely due to increased DMI, as affected mainly by the soyhulls. Compared with AS, CS-fed cows had greater DMI (7%) and FPCM (4%), but they were less efficient (5%), and CH4 yield (g/kg of DMI) was reduced by 8%. In addition, per unit of gross energy intake, CS-fed cows lost less urinary energy (15%) and CH energy (11%) than did AS-fed cows. We concluded that, in contrast to level and source of FNDF, breed did not affect digestive and metabolic efficiencies, and, furthermore, neither breed nor dietary treatments affected CH4 intensity. The tradeoff between CH4 and N losses may have implications in future studies assessing the environmental effects of milk production when approached from a whole-farm perspective.
    [Abstract] [Full Text] [Related] [New Search]