These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inducing cellular immune responses with a marked Mycobacterium avium subsp. paratuberculosis strain in dairy calves.
    Author: Luo L, De Buck J.
    Journal: Vet Microbiol; 2020 May; 244():108665. PubMed ID: 32402345.
    Abstract:
    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease, a chronic granulomatous enteritis with a high global prevalence in dairy cattle. This disease causes significant economic loss in the dairy industry and has been challenging to control, as current diagnostic assays are low in sensitivity and specificity, and previously developed vaccines do not prevent infection and face regulatory concerns due to interference with bovine tuberculosis diagnostics. To remediate this issue, positive and negative immune markers were created in a MAP strain as a step towards a vaccine capable of differentiating infected from vaccinated animals (DIVA). A gene coding for an immunogenic protein (MAP1693c) in the MAP genome was replaced with a library of epitope-tagged immunogenic genes (pepA) via a stable allelic exchange method. These markers were evaluated in a calf infection trial, where Holstein-Friesian dairy calves were inoculated at two weeks of age with either the marked strain or the parent strain, or remained uninfected controls. Cellular immune responses to the markers were measured using an interferon gamma release assay (IGRA). There were no MAP1693c marker-specific differences in cellular immune responses between infection groups. A scrambled version of the HA (human influenza hemagglutinin) epitope, but not the actual HA epitope, induced a significant IFN-γ response in marker-infected calves compared to WT-infected and uninfected groups at 4.5 months post-inoculation. This scrambled HA epitope thus holds potential as a diagnostic tool as part of a DIVA vaccine for Johne's disease.
    [Abstract] [Full Text] [Related] [New Search]