These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitigation of arsenic driven utero-ovarian malfunction and changes of apoptotic gene expression by dietary NAC.
    Author: Dash M, Dey A, Chattopadhyay S.
    Journal: Ecotoxicol Environ Saf; 2020 Aug; 199():110675. PubMed ID: 32402895.
    Abstract:
    An oral painless dietary therapy is also indispensable in the management of arsenic toxicity despite of its conventional painful therapeutic management. The present study focused on the management of arsenic mediated female reproductive dysfunctions by dietary therapy of N-acetyl cysteine (NAC). Here, sodium arsenite was given at the dose of 10 mg/kg body weight orally for the first 8 day. Day 9 onwards up to day 16 these arsenicated rats were provided with NAC (250 mg/kg body weight) enriched basal diet once daily. Arsenic intoxicated group exhibited a comparable inactivation of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) due to oxidative stress in reproductive organs along with a simultaneous elevation of lipid peroxidation state and decline in non-protein soluble thiols (NPSH) level in female reproductive organs. Arsenic intoxication also accomplished with the up-regulation of inflammatory markers tumour necrosis factor (TNF α) and nuclear factor κB (NF κB). Pro-apoptotic Bax gene and p53 gene expressions were also raised due to arsenic intoxication while anti-apoptotic Bcl-2 gene expression was suppressed. In fact, arsenication decreased the circulating level of vitamin B12 and folic acid. Dietary NAC supplementation significantly reversed back the activity of antioxidant enzymes in arsenite fed rats towards normalcy and also sustained the normal reproductive cyclicity, utero-ovarian histo-morphology and estradiol receptor α (ER-α) expression in these reproductive organs. Dietary NAC exerted its positive action against arsenic intoxication by up-regulation of Bcl-2 gene expression along with the suppression of pro-apoptotic Bax gene and p53 gene. Thus, dietary NAC also plays anti-apoptotic, anti-inflammatory, and anti-oxidative role against arsenic toxicity. NAC also regulates the components (vitamin B12 and folic acid) of S-adenosylmethionine pool in the way of probable removal of arsenic from the system.
    [Abstract] [Full Text] [Related] [New Search]