These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fundamental electro-optic limitations of thin-film lithium niobate microring modulators.
    Author: Bahadori M, Goddard LL, Gong S.
    Journal: Opt Express; 2020 Apr 27; 28(9):13731-13749. PubMed ID: 32403842.
    Abstract:
    We investigate the impact of waveguide curvature on the electro-optic efficiency of microring resonators in thin-film X-cut or Y-cut lithium niobate (in-plane extraordinary axis) and derive explicit relations on the response. It is shown that such microring modulators have a fundamental upper bound on their electro-optic performance (∼50% filling factor) which corresponds to a specific arrangement of metal electrodes surrounding the microring and yields nearly identical results for X-cut and Y-cut designs. We further show that this limitation does not exist (i.e., 100% filling factor is possible) with Z-cut microring modulators or can be circumvented (i.e., ∼100% filling factor is possible) in X-cut and Y-cut modulators that use a race-track configuration with segmented electrodes. Comparison of our analytical results with multiphysics simulations and measured electro-optic efficiencies of microring resonators in the literature demonstrates the validity and accuracy of our approach.
    [Abstract] [Full Text] [Related] [New Search]