These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway. Author: Jiang K, Teng GD, Chen YQ. Journal: J Gene Med; 2020 Oct; 22(10):e3216. PubMed ID: 32410261. Abstract: BACKGROUND: The present study aimed to determine the role and mechanism of miR-23 with respect to regulating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). MATERIALS: The expression of miR-23 and MEF2C was measured in osteoporosis (OP) patients and healthy controls by a quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The correlation between miR-23 and MEF2C was determined by the Pearson correlation coefficient. Moreover, bioinformatic analysis was performed using public databases. Target gene function and potential pathways were further examined. Then, we used a miR-23 mimic or inhibitor to further explore the potential mechanism of miR-23. RESULTS: miR-23 is found to be up-regulated and MEF2C is down-regulated in OP patients compared to healthy controls. miR-23 had a negative correlation with MEF2C (r = -0.937, p = 0.001). Bioinformatic analysis revealed that a total of 664 overlapping target genes were found in the TargetScan (http://www.targetscan.org), miRDB (http://mirdb.org) and miRanda (http://www.microrna.org/microrna/home.do) databases. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that miR-23 may regulate the mitogan-activated protein kinase (MAPK) signaling pathway. miR-23 is down-regulated and MEF2C is significantly up-regulated in the osteogenic differentiation of hBMSCs. MEF2C was significantly up-regulated in the osteogenic differentiation of hBMSCs. Overexpression of miR-23 significantly down-regulated alkaline phosphatase (ALP) activity and calcium deposition, whereas the miR-23 inhibitor had the opposite effects. Moreover, overexpression of miR-23 significantly decreased osteoblast-related markers (Runx2, Osx, ALP and OCN). Further experiments confirmed that MEF2C is a direct target of miR-23. Moreover, the miR-23 mimic enhanced the expression of p-p38 but had no effect on p-JNK. CONCLUSIONS: miR-23 decreases the osteogenic differentiation of hBMSCs through the MEF2C/MAPK signaling pathway.[Abstract] [Full Text] [Related] [New Search]