These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tumour control probability after Ruthenium-106 brachytherapy for choroidal melanomas. Author: Espensen CA, Appelt AL, Fog LS, Thariat J, Gothelf AB, Aznar MC, Kiilgaard JF. Journal: Acta Oncol; 2020 Aug; 59(8):918-925. PubMed ID: 32412331. Abstract: Purpose: Ruthenium-106 (Ru-106) brachytherapy is a common eye-preserving treatment for choroidal melanomas. However, a dose-response model describing the relationship between the actual delivered tumour dose and tumour control has, to the best of our knowledge, not previously been quantified for Ru-106 brachytherapy; we aimed to rectify this.Material and methods: We considered consecutive patients with primary choroidal melanomas, treated with Ru-106 brachytherapy (2005-2014). Dosimetric plans were retrospectively recreated using 3D image-guided planning software. Pre-treatment fundus photographies were used to contour the tumour; post-treatment photographies to determine the accurate plaque position. Patient and tumour characteristics, treatment details, dose volume histograms, and clinical outcomes were extracted. Median follow-up was 5.0 years. The relationship between tumour dose and risk of local recurrence was examined using multivariate Cox regression modelling, with minimum physical tumour dose (D99%) as primary dose metric.Results: We included 227 patients with median tumour height and largest base dimension of 4 mm (range 1-12, IQR 3-6) and 11 mm (range 4-23, IQR 9-13). The estimated 3 year local control was 82% (95% CI 77-88). Median D99% was 105 Gy (range 6-783, IQR 65-138); this was the most significant factor associated with recurrence (p < .0001), although tumour height, combined TTT and Ru-106 brachytherapy, and sex were also significant. The hazard ratio (HR) for a 10 Gy increase in D99% was 0.87 (95% CI 0.82-0.93). Using biological effective dose in the model resulted in no substantial difference in dose dependence estimates. Robustness cheques with D1-99% showed D99% to be the most significant dose metric for local recurrence.Conclusion: The minimum tumour dose correlated strongly with risk of tumour recurrence, with 100 Gy needed to ensure at least 84% local control at 3 years.[Abstract] [Full Text] [Related] [New Search]