These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Downregulation of MicroRNA-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L.
    Author: Tian RH, Guo KM, Han GH, Bai Y.
    Journal: Exp Mol Pathol; 2020 Aug; 115():104452. PubMed ID: 32413360.
    Abstract:
    BACKGROUND: Hypospadias, as a congenital disorder of the urethra, is the second most common birth abnormality of the male reproductive system. This study primarily investigates the effects of microRNA-494 (miR-494) on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway and on the development of hypospadias by binding to neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4L). METHODS: We induced a mouse model of hypospadias through di-(2-ethylhexyl) phthalate treatment. The underlying regulatory mechanisms of miR-494 in this model were analyzed upon treatment of miR-494 mimic, miR-494 inhibitor, or small interfering RNA against Nedd4L in urethral epithelial cells isolated from mice with hypospadias. We then verified the binding site between miR-494 and Nedd4L and applied a gain- and loss-of-function approach to determine the effects of miR-494 on cell proliferation, cycle distribution, and apoptosis. RESULTS: Male mice with hypospadias exhibited significantly higher miR-494 expression and lower Nedd4L expression in urethral tissues than normal male mice. Nedd4L was verified as a target gene of miR-494. Treatment with miR-494 inhibitor suppressed the activation of the TGF-β1/Smads signaling pathway, whereas down-regulation of miR-494 exerted protective effects on urethral epithelial cells by impeding cell proliferation and inducing cell apoptosis. CONCLUSIONS: The study indicates that downregulation of miR-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L.
    [Abstract] [Full Text] [Related] [New Search]