These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution. Author: Jia C, Wu L, Chen Q, Lin J, Yang L, Song Z, Guan B. Journal: Chemosphere; 2020 Sep; 255():126936. PubMed ID: 32417511. Abstract: Transforming gypsum into α-calcium sulfate hemihydrate (α-HH) provides a promising utilization pathway for the abundant amount of chemical gypsum. The transformation follows the route of "dissolution-recrystallization", during which the arsenic pollutant in gypsum is released into the solution, and hence raises the possibility of being distributed into the product of α-HH, a potential harm that has always been neglected. Investigation of the transformation process at neutral pH revealed that the arsenate ions in solution were distributed into α-HH and generated an enrichment of arsenic by 4-6 times. Arsenate ions distributed into α-HH by substitution for lattice sulfate, adsorption on α-HH facets and occupation for surface sulfate sites. While at higher concentrations, calcium arsenate coprecipitated with α-HH or even crystallized independently. Increasing temperature accelerated the phase transformation and restrained arsenate migration into α-HH due to the lag of distribution balance. The pH of solution modulated the dominant arsenate species and decreasing pH weakened arsenate substitution capacity for sulfate in α-HH. This work uncovers arsenate distribution mechanism during the transformation of gypsum into α-HH and provides a feasible method to restrain arsenate distribution into product, which helps to understand arsenate behavior in hydrothermal solution with high concentration of sulfate minerals and provides a guidance for controlling pollutants distribution into product.[Abstract] [Full Text] [Related] [New Search]