These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microbial community functional structure in an aerobic biofilm reactor: Impact of streptomycin and recovery.
    Author: Luan X, Zhang H, Tian Z, Yang M, Wen X, Zhang Y.
    Journal: Chemosphere; 2020 Sep; 255():127032. PubMed ID: 32417519.
    Abstract:
    Antibiotics can affect microbial community structure and promote antibiotic resistance. However, the course of microbial community recovery in wastewater treatment systems after antibiotic disturbance remains unclear. Herein, multiple molecular biology tools, including 16S amplicon sequencing, GeoChip 5.0, quantitative polymerase chain reaction (qPCR), and metagenomic sequencing, were used to investigate the year-long (352 d) recovery of the microbial community functional structure in an aerobic biofilm reactor. Nitrification was completely inhibited under 50 mg/L of streptomycin spiking (STM_50) due to the significant reduction of ammonia-oxidizing bacteria, but recovered to original pre-disturbance levels after streptomycin removal, indicating the high resilience of ammonia-oxidizing bacteria. Bacterial community richness and diversity decreased significantly under STM_50 (p < 0.05), but recovered to levels similar to those observed before disturbance after 352 d. In contrast, bacterial composition did not recover to the original structure. The carbon degradation and nitrogen cycling functional community significantly changed after recovery compared to that observed pre-disturbance (p < 0.05), thus indicating functional redundancy. Additionally, levels of aminoglycoside and total antibiotic resistance genes under STM_50 (relative abundance, 0.33 and 0.80, respectively) and after one year of recovery (0.12 and 0.29, respectively) were higher than the levels detected pre-disturbance (0.04 and 0.24, respectively). This study provides an overall depiction of the recovery of the microbial community functional structure after antibiotic exposure. Our findings give notice that recovery caused by antibiotic disturbance in the water environment should be taken more seriously, and that engineering control strategies should be implemented to prevent the antibiotic pollution of wastewater.
    [Abstract] [Full Text] [Related] [New Search]