These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Network Analysis of Transcriptome and LC-MS Reveals a Possible Biosynthesis Pathway of Anthocyanins in Dendrobium officinale. Author: Ren Z, Qiu F, Wang Y, Yu W, Liu C, Sun Y, Wang Y, Zhang X, Xing S, Tao S, Huang Y, Liu G, Wei Z, Yu B, Du S, Lei Z, Wei G. Journal: Biomed Res Int; 2020; 2020():6512895. PubMed ID: 32420359. Abstract: Anthocyanins, a group of flavonoids, are widely present in plants and determine the colors of the peels of stems, fruits, and flowers. In this study, we used UHPLC-ESI-MS to identify anthocyanins in the herbal plant Dendrobium officinale, which has been used for centuries in China. The results indicated that the total anthocyanin content in samples from Guangxi was the highest. Seven anthocyanins were identified, and the fragmentation pathways were proposed from D. officinale. Most of the identified anthocyanins were composed of cyanidin and sinapoyl groups. We also carried out that the sinapoyl group had active sites on breast cancer receptors by using Schrödinger. The relative levels of the 7 anthocyanins in the samples from the three locations were determined. Transcriptomic analysis was used to analyze the sinapoyl anthocyanin synthesis-related genes in plants, such as genes encoding UGTs and serine carboxypeptidase. We speculated that sinapoyl anthocyanin biosynthesis was associated with the activities of certain enzymes, including chalcone flavonone isomerase-like, hydroxycinnamoyltransferase 1, UGT-83A1, UGT-88B1 isoform X1, serine carboxypeptidase-like 18 isoform X3, and serine carboxypeptidase-like 18.[Abstract] [Full Text] [Related] [New Search]