These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Searching for valuable differentially expressed miRNAs in postmenopausal osteoporosis by RNA sequencing. Author: Wang R, Lu A, Liu W, Yue J, Sun Q, Chen J, Luan H, Zhai Y, Li B, Jiang Z, Li Y. Journal: J Obstet Gynaecol Res; 2020 Jul; 46(7):1183-1192. PubMed ID: 32429001. Abstract: AIM: Postmenopausal osteoporosis is a systemic and chronic bone disease in women. In order to understand the pathological mechanism of postmenopausal osteoporosis, we aimed to find the potential differentially expressed miRNAs in the disease. METHODS: Firstly, RNA sequencing was used to identify differentially expressed miRNAs, followed by the construction of the miRNA-target mRNA regulatory network. Then, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyze the biological function of target mRNAs. Finally, electronic validation of identified differentially expressed miRNAs and target mRNAs was performed. RESULTS: A total of 33 differentially expressed miRNAs (18 upregulated and 15 downregulated miRNAs) and 6820 miRNA-mRNA pairs were identified. Among which, seven miRNAs with high degree including hsa-miR-17-5p, hsa-miR-1-3p, hsa-miR-193b-3p, hsa-miR-125b-5p, hsa-miR-10b-5p, hsa-miR-100-5p and hsa-miR-30a-3p were obtained in the miRNA-mRNA regulatory network. TGF-beta was the most significantly enriched signaling pathway of target mRNAs. The electronic validation result of hsa-miR-1-3p, hsa-miR-193b-3p, hsa-miR-10b-5p, hsa-miR-100-5p, hsa-miR-133b, hsa-miR-708-5p, CRK, RAB5C, CCND1 and PCYOX1 was consisted with the RNA sequencing analysis. CONCLUSION: Dysfunctional miRNAs may play significant roles in postmenopausal osteoporosis.[Abstract] [Full Text] [Related] [New Search]