These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Autophagy related 4B, upregulated by HIF-1α, attenuates the sensitivity to cisplatin in nasopharyngeal carcinoma cells. Author: Huang J, Li HB, Yu S, Yuan F, Lou ZP. Journal: Eur Rev Med Pharmacol Sci; 2020 May; 24(9):4793-4802. PubMed ID: 32432742. Abstract: OBJECTIVE: Increasing evidence has shown that autophagy related proteins and hypoxia-inducible factor-1α (HIF-1α) are both involved in the malignant progress of nasopharyngeal carcinoma (NPC), and HIF-1α plays an emerging role in the chemosensitivity of NPC cells. However, it is still unknown whether autophagy related proteins are associated with HIF-1α in regulating the chemosensitivity of NPC cells. MATERIALS AND METHODS: Quantitative Real-time PCR (qPCR) was applied to determine mRNA levels of HIF-1α and the autophagy related proteins, such as ATG3, ATG4B, ATG5, Beclin1, ATG7, ATG10, ATG12 and ATG16L1. Western blot was applied to determine protein levels of HIF-1α, ATG4B and cleaved Caspase-3. Cell viability and death were investigated by cell counting kit-8 and trypan blue exclusion assay. In addition, Caspase-3 activity was detected to reflect apoptosis. Furthermore, Luciferase reporter assay was applied to explore the mechanism by which HIF-1α transcriptionally upregulated ATG4B expression. RESULTS: Our study reveals that HIF-1α increased ATG4B expression in NPC cells, and in turn upregulated the cisplatin (DDP)-induced protective autophagy, resulting in enhanced killing effect of DDP to NPC cells. In mechanism, reporter assay showed that HIF-1α upregulated ATG4B expression by activating its gene promoter region. The binding site (-225 to -216) was required for HIF-1α-induced increase of ATG4B gene promoter activity. CONCLUSIONS: These results indicate that HIF-1α elevates ATG4B via promoting its transcription, which alleviates the sensitivity of DDP in NPC cells through enhancing protective autophagy, suggesting that ATG4B, upregulated by HIF-1α, may be a novel target for DDP sensitization in the treatment of NPC in clinic.[Abstract] [Full Text] [Related] [New Search]