These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TICT-Based Near-Infrared Ratiometric Organic Fluorescent Thermometer for Intracellular Temperature Sensing.
    Author: Meng L, Jiang S, Song M, Yan F, Zhang W, Xu B, Tian W.
    Journal: ACS Appl Mater Interfaces; 2020 Jun 17; 12(24):26842-26851. PubMed ID: 32436373.
    Abstract:
    Fluorescent thermometers with near-infrared (NIR) emission play an important role in visualizing the intracellular temperature with high resolution and investigating the cellular functions and biochemical activities. Herein, we designed and synthesized a donor-Π-acceptor luminogen, 2-([1,1'-biphenyl]-4-yl)-3-(4-((E)-4-(diphenylamino)styryl) phenyl) fumaronitrile (TBB) by Suzuki coupling reaction. TBB exhibited twisted intramolecular charge transfer-based NIR emission, aggregation-induced emission, and temperature-sensitive emission features. A ratiometric fluorescent thermometer was constructed by encapsulating thermosensitive NIR fluorophore TBB and Rhodamine 110 dye into an amphiphilic polymer matrix F127 to form TBB&R110@F127 nanoparticles (TRF NPs). TRF NPs showed a good temperature sensitivity of 2.37%·°C-1, wide temperature response ranges from 25 to 65 °C, and excellent temperature-sensitive emission reversibility. Intracellular thermometry experiments indicated that TRF NPs could monitor the cellular temperature change from 25 to 53 °C for Hep-G2 cells under the photothermal therapy agent heating process, indicating the considerable potential applications of TRF NPs in the biological thermometry field.
    [Abstract] [Full Text] [Related] [New Search]