These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of reducing chemical fertilizer combined with organic amendments on ammonia-oxidizing bacteria and archaea communities in a low-fertility red paddy field. Author: Yang D, Xiao X, He N, Zhu W, Liu M, Xie G. Journal: Environ Sci Pollut Res Int; 2020 Aug; 27(23):29422-29432. PubMed ID: 32440868. Abstract: Ammonia oxidation process in soil has a great contribution to the emission of nitrous oxide, which is a hot issue in the study of N cycle of rice field ecosystem. Organic amendments which partially substitute chemical nitrogen fertilizer are widely adopted to optimizing N management and reduce the use of chemical nitrogen fertilizers in the paddy ecosystem, but their long-term effects on ammonia-oxidizing archaea (AOA) and bacteria (AOB) were not well understood. Thus, based on a 6-year field trial that comprised four fertilization strategies (CF, chemical fertilizer; PM, pig manure substituting for 20% chemical N; BF, biogas slurry substituting for 20% chemical N; and GM, milk vetch substituting for 20% chemical N) and no N fertilizer application as CK, the abundance and community structure of ammonia oxidizers were examined by using qPCR and Illumina Miseq sequencing approaches based on the functional marker genes (amoA) in a low-fertility paddy field. The results revealed that 6 years of organic-substitute fertilization significantly increased AOA abundance in comparison with NF and CF. However, only CF and PM had a higher AOB abundance than those in NF and no significant difference between CF and organic-substitute treatments was observed. Both AOA and AOB were significantly correlated with soil potential nitrification rate (PNR). Moreover, organic-substitute treatments showed the evident changes in the AOA community, while little were observed in the AOB community. Soil pH was the main predictor for AOA abundance, while NH4+-N and NO3--N were the main predictors for AOB abundance. This study suggests that both AOA and AOB were jointly contributed to the variation of soil potential nitrification rate, while the AOA community was shown to be more responsive to organic-substitute fertilization strategies than AOB in the tested soils.[Abstract] [Full Text] [Related] [New Search]