These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MiR-7-5p Enhances Cerebral Ischemia-Reperfusion Injury by Degrading sirt1 mRNA.
    Author: Zhao J, Wang B.
    Journal: J Cardiovasc Pharmacol; 2020 Aug; 76(2):227-236. PubMed ID: 32453073.
    Abstract:
    Cerebral ischemia-reperfusion (I/R) is a kind of neurovascular disease that causes serious cerebral damage. MicroRNAs (miRNAs) have been widely reported to participate in multiple diseases, including cerebral I/R injury. However, the exact mechanisms of miR-7-5p in cerebral I/R injury was not fully elucidated. In this study, we explored the biological role and regulatory mechanism of miR-7-5p in cerebral I/R injury. We established an in vivo model of cerebral I/R by middle cerebral artery occlusion and an in vitro cellular model of cerebral I/R injury through treating neurons (SH-SY5Y cells) with oxygen-glucose deprivation (OGD). In addition, miR-7-5p expression was confirmed to be upregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Moreover, miR-7-5p inhibition overtly suppressed cerebral injury, cerebral inflammation, and SH-SY5Y cells apoptosis. Sirtuin 1 (sirt1) is previously reported to alleviate I/R, and in this study, it was identified to be a target of miR-7-5p based on luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction revealed sirt1 expression was downregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Besides, miR-7-5p negatively regulated sirt1. Finally, rescue assays delineated sirt1 overexpression recovered the miR-7-5p upregulation-induced promotion on cerebral I/R injury. In conclusion, miR-7-5p enhanced cerebral I/R injury by degrading sirt1, providing a new paradigm to investigate cerebral I/R injury.
    [Abstract] [Full Text] [Related] [New Search]