These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Circular RNA circ_0000615 knockdown suppresses the development of nasopharyngeal cancer through regulating the miR-338-3p/FGF2 axis.
    Author: Liu HS, Zheng RN, Guo LB, Fu XJ.
    Journal: Neoplasma; 2020 Sep; 67(5):1032-1041. PubMed ID: 32453598.
    Abstract:
    Nasopharyngeal cancer (NPC) is a type of head and neck cancer with a high rate of metastasis. Circular RNAs (circRNAs) were reported to be related to the development of human cancers. This research aimed to investigate the functional mechanism of circRNA circ_0000615 in NPC. The gene expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess cell proliferation ability. Transwell assay was used to measure cell migratory and invasive abilities. Furthermore, the interaction between miR-338-3p and circ_0000615 or fibroblast growth factor 2 (FGF2) was predicted by starBase v.2.0 and then confirmed by the dual-luciferase reporter assay. Besides, the mouse xenograft experiment was carried out to explore the effect of circ_0000615 on tumor growth in vivo. We detected increased levels of circ_0000615 and FGF2, along with a decreased level of miR-338-3p in NPC tissues and cells. Circ_0000615 knockdown suppressed the proliferation, migration, invasion, and EMT of NPC cells. Interestingly, circ_0000615 interacted with miR-338-3p, and miR-338-3p targeted FGF2. Circ_0000615 inhibited miR-338-3p expression to upregulate the FGF2 level. Furthermore, both miR-338-3p depletion and FGF2 overexpression weakened the effect of circ_0000615 knockdown on NPC cell progression. Besides, circ_0000615 knockdown repressed tumor growth in vivo. In conclusion, our findings demonstrated that circ_0000615 knockdown suppressed the growth of NPC cells via modulating miR-338-3p/FGF2 axis, providing a theoretical basis for the treatment of NPC.
    [Abstract] [Full Text] [Related] [New Search]