These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Author: Abouzeid RE, Khiari R, Salama A, Diab M, Beneventi D, Dufresne A. Journal: Int J Biol Macromol; 2020 Oct 01; 160():538-547. PubMed ID: 32470581. Abstract: This paper reports the manufacturing by 3D printing of scaffolds for in-situ mineralization of hydroxyapatite using aqueous suspensions of alginate and polyvinyl alcohol (PVA)-grafted cellulose nanofibers (CNF). Bifunctional CNF with carboxyl and aldehyde moieties were prepared from bleached bagasse pulp and crosslinked with PVA. Aqueous hydrogels for 3D printing were prepared by directly mixing PVA-grafted CNF with sodium alginate, with and without the addition of phosphate ions. A calcium chloride solution was sprayed during the printing process in order to partially crosslink alginate and to increase the dimensional stability of the printed gel. At the end of the printing process, the prepared scaffolds were dipped into a CaCl2 solution to: i) complete alginate crosslinking and ii) promote hydroxyapatite nucleation and growth by reaction with phosphate ions. In order to better understand the mechanisms governing manufacturing of scaffolds by 3D printing, the rheological behavior of alginate/PVA-grafted CNF and the mechanical properties of unit filaments obtained by direct hydrogel extrusion were investigated. The final scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). This study shows that 3D printed sodium alginate/PVA-grafted CNF hydrogels are promising scaffold materials for bone tissue engineering.[Abstract] [Full Text] [Related] [New Search]