These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Beer spoilage and low pH tolerance is linked to manganese homeostasis in selected Lactobacillus brevis strains. Author: Feyereisen M, Mahony J, O'Sullivan T, Boer V, van Sinderen D. Journal: J Appl Microbiol; 2020 Nov; 129(5):1309-1320. PubMed ID: 32478894. Abstract: AIMS: Beer is a harsh medium for bacteria to survive, however, lactic acid bacteria including Lactobacillus brevis have evolved the ability to grow in beer. Here, the influence of environmental factors such as low pH, ethanol or hop content was assessed. METHODS AND RESULTS: A transcriptomic analysis of two Lact. brevis beer-spoiling strains was performed comparing growth in nutritive media with or without the imposition of a stressor related to the beer environment. This allowed the identification of a manganese transporter encoding gene that contributes to low pH tolerance. CONCLUSIONS: We report on the importance of a manganese transporter associated with pH tolerance and beer spoilage in Lact. brevis. The importance of manganese for Lact. brevis growth in a low pH environment was highlighted. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial spoilage of beer may result in product withdrawal with concomitant economic losses for the brewing industry. A limited number of genes involved in beer spoilage have been identified but none of them are universal. It is clear that other molecular players are involved in beer spoilage. The study highlights the complexity of the genetic requirements to facilitate beer spoilage and the role of multiple key players in this process.[Abstract] [Full Text] [Related] [New Search]