These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The influence of water stress on grapevine (Vitis vinifera L.) shoots in a cool, humid climate: growth, gas exchange and hydraulics.
    Author: Pagay V, Zufferey V, Lakso AN.
    Journal: Funct Plant Biol; 2016 Sep; 43(9):827-837. PubMed ID: 32480507.
    Abstract:
    Recent climatic trends of higher average temperatures and erratic precipitation patterns are resulting in decreased soil moisture availability and, consequently, periods of water stress. We studied the effects of seasonal water stress on grapevine (Vitis vinifera L. cv. Riesling grafted onto 101-14 (Vitis riparia Michx.×Vitis rupestris Scheele) rootstock) shoot growth, leaf gas exchange, xylem morphology and hydraulic performance in the cool-climate Finger Lakes region of New York. A plastic rain exclusion tarp was installed on the vineyard floor to create a soil moisture deficit and consequently induce vine water stress. Weekly measurements of predawn leaf and midday stem water potentials (Ψmd) were made, and two contrasting shoot length classes, long (length >2.0m) and short (length <1.0m), were monitored. Growth of both long and short shoots was positively correlated with Ψmd but no difference in water status was found between the two. Compared with rain-fed vines, water-stressed vines had lower photosynthesis and stomatal conductance later in the season when Ψmd dropped below -1.2MPa. Long shoots had three-fold higher xylem-specific hydraulic conductivity values than short shoots. Long shoots experiencing water stress were less vulnerable to xylem cavitation than shorter shoots even though they had more large-diameter vessels. The lower vulnerability to cavitation of long shoots may be attributed to less xylem intervessel pitting being found in long shoots, consistent with the air-seeding hypothesis, and suggests that a hydraulic advantage enables them to maintain superior growth and productivity under water stress.
    [Abstract] [Full Text] [Related] [New Search]