These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Possible involvement of phosphoenolpyruvate carboxylase and NAD-malic enzyme in response to drought stress. A case study: a succulent nature of the C4-NAD-ME type desert plant, Salsola lanata (Chenopodiaceae). Author: Wen Z, Zhang M. Journal: Funct Plant Biol; 2017 Nov; 44(12):1219-1228. PubMed ID: 32480646. Abstract: The co-ordination between the primary carboxylating enzyme phosphoenolpyruvate carboxylase (PEPC) and the further decarboxylating enzymes is crucial to the efficiency of the CO2-concentrating mechanism in C4 plants, and investigations on more types of C4 plants are needed to fully understand their adaptation mechanisms. In this study we investigated the effect of drought on carboxylating enzyme PEPC, and the further decarboxylating NAD-malic enzyme (NAD-ME) of Salsola lanata Pall. (Chenopodiaceae) - an annual succulent C4-NAD-ME subtype desert plant. We investigated enzyme activity at the transcriptional level with real-time quantitative PCR and at the translational level by immunochemical methods, and compared S. lanata with other forms of studied C4 plants under drought stress. Results showed that only severe stress limited PEPC enzyme activity (at pH 8.0) of S. lanata significantly. Considering that PEPC enzyme activity (at pH 8.0) was not significantly affected by phosphorylation, the decrease of PEPC enzyme activity (at pH 8.0) of S. lanata under severe stress may be related with decreased PEPC mRNA. The suggestion of increased phosphorylation of the PEPC enzyme in plants under moderate stress was supported by the ratio of PEPC enzyme activity at pH 7.3/8.0, as PEPC enzyme is inhibited by L-malate and the evidence of the 50% inhibiting concentration of L-malate. NAD-ME activity decreased significantly under moderate and severe stress, and coincided with a change of leaf water content rather than the amount of α-NAD-ME mRNA and protein. Leaf dehydration may cause the decrease of NAD-ME activity under water stress. Compared with other C4 plants, the activities of PEPC and NAD-ME of S. lanata under drought stress showed distinct features.[Abstract] [Full Text] [Related] [New Search]