These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Author: Su J, Du Z, Xiao L, Wei F, Yang Y, Li M, Qiu Y, Liu J, Chen J, Xiao Y. Journal: Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110983. PubMed ID: 32487397. Abstract: Graphene oxide (GO) and its derivatives are currently being explored for the modification of bone biomaterials. However, the effect of GO coatings on immunoregulation and subsequent impacts on osteogenesis are not known. In this study, GO was coated on pure titanium using dopamine. GO-coated titanium (Ti-GO) surfaces exhibited good biocompatibility, with the ability to stimulate the expression of osteogenic genes, and extracellular matrix mineralization in human mesenchymal stromal cells (hMSCs). Interestingly, it was found that GO-coated surfaces could manipulate the polarization of macrophages and expression of inflammatory cytokines via the Toll-like receptor pathway. Under physiological conditions, Ti-GO activated macrophages and induced mild inflammation and a pro-osteogenic environment, characterized by a slight increase in the levels of proinflammatory cytokines, as well as increased expression of the TGF-β1 and oncostatin M genes. In an environment mimicking acute inflammatory conditions, Ti-GO attenuated inflammatory responses, as shown by the downregulation of proinflammatory cytokines. Conditioned medium collected from macrophages stimulated by Ti-GO played a significant stimulatory role in the osteogenic differentiation of hMSCs. In summary, GO-coated surfaces displayed beneficial immunomodulatory effects in osteogenesis, indicating that GO could be a potential substance for the modification of bone scaffolds and implants.[Abstract] [Full Text] [Related] [New Search]