These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Virtual screen of effective AChE inhibitory constituents from Glycyrrhizae Radix et Rhizoma based on pharmacophore and molecular docking]. Author: Liu GX, Zhao ZF, Xie J, Sang J, Liang YF, Qian MC, Li CQ. Journal: Zhongguo Zhong Yao Za Zhi; 2020 May; 45(10):2431-2438. PubMed ID: 32495603. Abstract: This research is to predict anti-Alzheimer's disease active constituents on the target of acetylcholinesterase(AChE) from Glycyrrhizae Radix et Rhizoma with the help of pharmacophore and molecular docking. AChE ligand-based pharmacophore model was set up and the molecular library of the constituents from Glycyrrhizae Radix et Rhizoma were established by collecting literature. Then the constituents from Glycyrrhizae Radix et Rhizoma were screen for the potential AChE inhibitory potency in silico through matching with the best pharmacophore model. The flexible docking was used to evaluate the interactions between compounds screened from pharmacophore model and AChE protein(PDB ID:4 EY7). The interactions were expressed including but not limited to CDOCKER interaction energy, hydrogen bonds and non-bonding interactions. The molecular library of Glycyrrhizae Radix et Rhizoma contains 44 chemical constituents. As for the pharmacophore model, six kinds of potential AChE inhibitory constituents from Glycyrrhizae Radix et Rhizoma were considered to be the promising compounds according to the results of searching 3 D database of pharmacophore model. The molecular docking was possessed and the interaction patterns were given to show the detail interactions. The compounds screening from the pharmacophore model were consistent with the existing studies to some degree, indicating that the virtual screen protocols of AChE inhibitory constituents from Glycyrrhizae Radix et Rhizoma based on pharmacophore and molecular docking was reliable.[Abstract] [Full Text] [Related] [New Search]