These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multicenter Study on the Diagnostic Performance of Native-T1 Cardiac Magnetic Resonance of Chronic Myocardial Infarctions at 3T. Author: Wang G, Lee SE, Yang Q, Sadras V, Patel S, Yang HJ, Sharif B, Kali A, Cokic I, Xie G, Tighiouart M, Collins J, Li D, Berman DS, Chang HJ, Dharmakumar R. Journal: Circ Cardiovasc Imaging; 2020 Jun; 13(6):e009894. PubMed ID: 32507020. Abstract: BACKGROUND: Preclinical studies and pilot patient studies have shown that chronic infarctions can be detected and characterized from cardiac magnetic resonance without gadolinium-based contrast agents using native-T1 maps at 3T. We aimed to investigate the diagnostic capacity of this approach for characterizing chronic myocardial infarctions (MIs) in a multi-center setting. METHODS: Patients with a prior MI (n=105) were recruited at 3 different medical centers and were imaged with native-T1 mapping and late gadolinium enhancement (LGE) at 3T. Infarct location, size, and transmurality were determined from native-T1 maps and LGE. Sensitivity, specificity, receiver-operating characteristic metrics, and inter- and intraobserver variabilities were assessed relative to LGE. RESULTS: Across all subjects, T1 of MI territory was 1621±110 ms, and remote territory was 1225±75 ms. Sensitivity, specificity, and area under curve for detecting MI location based on native-T1 mapping relative to LGE were 88%, 92%, and 0.93, respectively. Native-T1 maps were not different for measuring infarct size (native-T1 maps: 12.1±7.5%; LGE: 11.8±7.2%, P=0.82) and were in agreement with LGE (R2=0.92, bias, 0.09±2.6%). Corresponding inter- and intraobserver assessments were also highly correlated (interobserver: R2=0.90, bias, 0.18±2.4%; and intraobserver: R2=0.91, bias, 0.28±2.1%). Native T1 maps were not different for measuring MI transmurality (native-T1 maps: 49.1±15.8%; LGE: 47.2±19.0%, P=0.56) and showed agreement (R2=0.71; bias, 1.32±10.2%). Corresponding inter- and intraobserver assessments were also in agreement (interobserver: R2=0.81, bias, 0.1±9.4%; and intraobserver: R2=0.91, bias, 0.28±2.1%, respectively). While the overall accuracy for detecting MI with native-T1 maps at 3T was high, logistic regression analysis showed that MI location was a prominent confounder. CONCLUSIONS: Native-T1 mapping can be used to image chronic MI with high degree of accuracy, and as such, it is a viable alternative for scar imaging in patients with chronic MI who are contraindicated for LGE. Technical advancements may be needed to overcome the imaging confounders that currently limit native-T1 mapping from reaching equivalent detection levels as LGE.[Abstract] [Full Text] [Related] [New Search]