These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physiological roles of transverse lipid asymmetry of animal membranes.
    Author: Clarke RJ, Hossain KR, Cao K.
    Journal: Biochim Biophys Acta Biomembr; 2020 Oct 01; 1862(10):183382. PubMed ID: 32511979.
    Abstract:
    The plasma membrane phospholipid distribution of animal cells is markedly asymmetric. Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are concentrated in the inner leaflet, whereas phosphatidylcholine (PC) and sphingomyelin (SM) are concentrated in the outer leaflet. This non-equilibrium situation is maintained by lipid pumps (flippases or floppases), which utilize energy in the form of ATP to translocate lipids from one leaflet to the other. Scramblases, which are activated when physiologically required, transport lipids in both directions across the membrane and can abolish lipid asymmetry. Lipid asymmetry also causes imbalances in the areas occupied by lipid in the two membrane leaflets, contributing to membrane curvature. The asymmetry of PS across the plasma membrane plays a crucial signalling role in numerous physiological processes. Exposure of PS on the external surface of blood platelets stimulates blood coagulation. PS exposure by other cells during apoptosis provides an "eat me" signal to surrounding macrophages. Many peripheral and integral membrane proteins have polybasic PS-binding domains on their cytoplasmic surfaces which either provide a membrane anchor or affect activity. These domains can also determine trafficking within the cell and control regulation via an electrostatic switch mechanism, as well as potentially acting as "death sensors" when cytoplasmic PS is transferred to the extracellular leaflet during apoptosis. Apart from these physiological roles, external PS exposure by microorganisms, viruses and cancer cells allows them to mimic the immunosuppressive anti-inflammatory action of apoptotic cells and proliferate, thus providing a strong medical motivation for future research in the field of lipid asymmetry in membranes.
    [Abstract] [Full Text] [Related] [New Search]