These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Denitrifying sulfur conversion-EBPR (DS-EBPR) process for treatment of seawater-based highly saline wastewater: Evaluation on performance, kinetics and microbial community structure. Author: Wu Z, Guo G, Kumar Biswal B, Dai J, Chen G. Journal: Bioresour Technol; 2020 Oct; 313():123574. PubMed ID: 32512430. Abstract: DS-EBPR is an alternative to the conventional activated sludge process which face great challenge for treatment of seawater-based highly saline wastewater. This study aims to investigate the impacts of long-term (248 days) 20% and 30% seawater fractions and short-term shock of 30%, 40%, 70% and 100% seawater fractions (corresponding to 1.0, 1.4, 2.5 and 3.5% of salinity) on the DS-EBPR performance, kinetics and microbial community structure. Long-term operation with high fraction (30%) of seawater marginally decreased the sulfur conversion and phosphorus uptake, which correlated well with the microbial dynamics. Temporal salinity shock from 1.0% (30% seawater) to 3.5% (100% seawater) remarkably reduced the phosphorus release/uptake by 36-44%, which was partly due to the decrease in the abundance of functional bacteria and chlorapatite (Ca5[PO4]3Cl) forming as P precipitates with 70-100% seawater addition. The formed chlorapatite contributed to approximately 8-26% of total P removal estimated by X-ray photoelectron spectroscopy analysis.[Abstract] [Full Text] [Related] [New Search]