These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: SPTBN1 suppresses the progression of epithelial ovarian cancer via SOCS3-mediated blockade of the JAK/STAT3 signaling pathway.
    Author: Chen M, Zeng J, Chen S, Li J, Wu H, Dong X, Lei Y, Zhi X, Yao L.
    Journal: Aging (Albany NY); 2020 Jun 08; 12(11):10896-10911. PubMed ID: 32516133.
    Abstract:
    SPTBN1 plays an anticancer role in many kinds of tumors and participates in the chemotherapeutic resistance of epithelial ovarian cancer (EOC). Here, we reported that lower SPTBN1 expression was significantly related to advanced EOC stage and shorter progression-free survival. SPTBN1 expression was also higher in less invasive EOC cell lines. Moreover, SPTBN1 decreased the migration ability of the EOC cells A2780 and HO8910 and inhibited the growth of EOC cells in vitro and tumor xenografts in vivo. SPTBN1 suppression increased the epithelial mesenchymal transformation marker Vimentin while decreasing E-cadherin expression. By analyzing TCGA data and immunohistochemistry staining of tumor tissue, we found that SPTBN1 and SOCS3 were positively coexpressed in EOC patients. SOCS3 overexpression or JAK2 inhibition decreased the proliferation and migration of EOC cells as well as the expression of p-JAK2, p-STAT3 and Vimentin, which were enhanced by the downregulation of SPTBN1, while E-cadherin expression was also reversed. It was also verified in mouse embryonic fibroblasts (MEFs) that loss of SPTBN1 activated the JAK/STAT3 signaling pathway with suppression of SOCS3. Our results suggest that SPTBN1 suppresses the progression of epithelial ovarian cancer via SOCS3-mediated blockade of the JAK/STAT3 signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]