These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly sensitive electrochemiluminescence aptasensor based on dual-signal amplification strategy for kanamycin detection. Author: Cheng S, Zhang H, Huang J, Xu R, Sun X, Guo Y. Journal: Sci Total Environ; 2020 Oct 01; 737():139785. PubMed ID: 32516665. Abstract: In order to effectively monitor the residue of kanamycin (KAN), a dual-signal-amplified electrochemiluminescence (ECL) aptasensor based on multi-walled carbon nanotubes@titanium dioxide/thionine (MWCNTs@TiO2/Thi) was proposed. MWCNTs@TiO2 with large specific surface area and favorable biocompatibility could accelerate charge transfer and enable high loading of luminol to enhance ECL response. As a perfect electronic mediator, Thi could also accelerate electron conductivity to further enhance ECL intensity. The ECL intensity of MWCNTs@TiO2/Thi was enhanced for 3.6-fold compared with that of individual Thi because Thi could strongly interact with MWCNTs through π-π stacking force to enhance the electronic transmission. With the outstanding electron transfer property of MWCNTs@TiO2 and Thi, ECL intensity of the proposed aptasensor was obviously increased. Upon addition of KAN, the aptamer bound to its target, which caused that the ECL intensity decrease significantly. Therefore, KAN concentration could be monitored on the basis of signal intensity. Under optimal conditions, the constructed aptasensor exhibited a sensitive response towards KAN and a low detection limit of 0.049 ng mL-1 was obtained. It also possessed the excellent specificity, favorable stability and good reproducibility. Importantly, the application of proposed ECL aptasensor provides an efficient approach for highly sensitive detection of various small molecular contaminants.[Abstract] [Full Text] [Related] [New Search]