These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design and Synthesis of Arylnaphthalene Lignan Lactone Derivatives as Potent Topoisomerase Inhibitors. Author: Chen W, Feng Z, Hu D, Meng J. Journal: Med Chem; 2021; 17(8):856-865. PubMed ID: 32520691. Abstract: BACKGROUND: Arylnaphthalene lignan lactones are a class of natural products containing the phenyl-naphthyl skeleton. Some arylnaphthalene lignan lactones have been used in clinical practice as antitumor agents, due to their cytotoxicity and inhibitory activities against DNA topoisomerase I (Topo I) and topoisomerase II (Topo II). OBJECTIVE: This study presents the design and synthesis of arylnaphthalene lignan lactones derivatives. The inhibitory activities against Topo I and Topo IIα and antitumor activities of these compounds were assayed. METHODS: A series of arylnaphthalene lignan lactones derivatives have been designed and synthesized, using the Diels-Alder reaction and Suzuki reaction as the key steps. Their antiproliferation activities were evaluated by sulforhodamine B assay on human breast cancer MDAMB-231, MDA-MB-435 and human cervical cancer HeLa cells. DNA relaxation assays were employed to examine the inhibitory activity of compounds 1-22 on Topo I and Topo IIα in vitro. Flow cytometry analysis was performed to study the drug effects on cell cycle progressions. RESULTS: Seven compounds exhibited the modest anti-proliferation activity with IC50 values between 1.36 and 20 μM. Compounds 3, 19 and 22 showed potent inhibitory activities with IC50 values less than 1 μM. DNA relaxation assay revealed that compound 22 showed potent inhibitory activity against Topo IIα in vitro. Compound 22 also induced DNA breaks in MDA-MB-435 cells evidenced by comet tails and the accumulation of γ-H2AX foci. The ability of 22 in inducing DNA breaks mediated by Topo IIα resulted in G2/M phase arrest and apoptosis. CONCLUSION: This work indicates that arylnaphthalene lignan lactones derivatives represent a novel type of Topo IIα inhibitory scaffold for developing new antitumor chemotherapeutic agents.[Abstract] [Full Text] [Related] [New Search]