These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In Vitro Effects of Live and Heat-Inactivated Bifidobacterium animalis Subsp. Lactis, BB-12 and Lactobacillus rhamnosus GG on Caco-2 Cells. Author: Castro-Herrera VM, Rasmussen C, Wellejus A, Miles EA, Calder PC. Journal: Nutrients; 2020 Jun 08; 12(6):. PubMed ID: 32521765. Abstract: Probiotic-host interaction can be cell-to-cell or through metabolite production. Dead (inactive) organisms could interact with the host, leading to local effects and possible health benefits. This research examined the effects of live and heat-inactivated Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) and Lactobacillus rhamnosus GG (LGG) on cultured Caco-2 cells focusing on epithelial integrity and production of inflammatory mediators. Live organisms increased transepithelial electrical resistance (TEER), a barrier-integrity marker, with LGG having a greater effect than BB-12. When mildly heat-treated, both organisms had a more modest effect on TEER than when alive. When they were heat-inactivated, both organisms had only a limited effect on TEER. Neither live nor heat-inactivated organisms affected production of six inflammatory mediators produced by Caco-2 cells compared to control conditions. Pre-treatment with heat-inactivated LGG or BB-12 did not alter the decline in TEER caused by exposure to an inflammatory cocktail of cytokines. However, pre-treatment of Caco-2 cells with heat-inactivated organisms alone or their combination decreased the production of interleukin (IL)-6, IL-18, and vascular endothelial growth factor. To conclude, while the live organisms improve the epithelial barrier using this model, neither live nor heat-inactivated organisms directly elicit an inflammatory response by the epithelium. Pre-treatment with heat-inactivated BB-12 or LGG can reduce some components of the response induced by an inflammatory stimulus.[Abstract] [Full Text] [Related] [New Search]