These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wnt/β-catenin. Author: Dong J, Xu X, Zhang Q, Yuan Z, Tan B. Journal: Exp Cell Res; 2020 Sep 01; 394(1):112137. PubMed ID: 32534061. Abstract: PI3K/AKT is one of the key pathways that regulate cell behaviors including apoptosis, proliferation, and differentiation. Although previous studies have demonstrated that this pathway is a crucial regulator of osteoblasts, the role of PI3K/AKT in fracture healing remains unclear. It is well known that the Wnt/β-catenin pathway plays an essential role in bone regeneration. However, whether there exists crosstalk between Wnt/β-catenin and PI3K/AKT in regulating osteoblasts and bone repair has not been reported. To address these issues, we establish a stabilized fracture model in mice and show that PI3K inhibitor LY294002 substantially inhibits the bone healing process, suggesting that PI3K/AKT promotes fracture repair. More importantly, we report that PI3K/AKT increases phosphorylation of GSK-3β at Ser9 and phosphorylation of β-catenin at Ser552 in fracture callus and murine osteoblastic MC3T3-E1 cells, both of which lead to β-catenin stabilization, nuclear translocation, as well as β-catenin-mediated TCF-dependent transcription, suggesting that β-catenin is activated downstream of PI3K/AKT. Furthermore, we show that ICG001, the inhibitor of β-catenin transcriptional activity, attenuates PI3K/AKT-induced osteoblast proliferation, differentiation, and mineralization, indicating that the PI3K/AKT/β-catenin axis is functional in regulating osteoblasts. Notably, the PI3K/AKT pathway is also activated by Wnt3a and is involved in Wnt3a-induced osteoblast proliferation and differentiation. Hence, our results reveal the existence of a Wnt/PI3K/AKT/β-catenin signaling nexus in osteoblasts, highlighting complex crosstalk between PI3K/AKT and Wnt/β-catenin pathways that are critically implicated in fracture healing.[Abstract] [Full Text] [Related] [New Search]