These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle. Author: Robertson GA, Stein PS. Journal: J Physiol; 1988 Oct; 404():101-28. PubMed ID: 3253428. Abstract: 1. The turtle spinal cord produces three forms of the fictive scratch reflex in response to tactile stimulation of sites on the body surface. Common to all three forms is the rhythmic alternation of activity between hip protractor and hip retractor motoneurones. Hip protractor motoneurone activity is monitored via nerves innervating the hip protractor muscle puboischiofemoralis internus pars anteroventralis (VP-HP). Hip retractor activity is monitored via nerves innervating several monoarticular hip retractor muscles, one hip adductor muscle, and several biarticular hip retractor-knee flexor muscles (HR-KF). Each form is characterized by the timing of activity of motoneurones innervating femorotibialis (FT-KE), a monoarticular knee extensor muscle, within this alternating cycle (Robertson, Mortin, Keifer & Stein, 1985). In the present study, intracellular recordings revealed a corresponding regulation of synaptic drive to knee extensor motoneurones with respect to the synaptic drive to the motoneurones innervating antagonist muscles of the hip. These patterns of synaptic activation give rise to the distinct motor pattern underlying each form of the scratch reflex. 2. VP-HP, HR-KF and FT-KE motoneurones all exhibited phasic depolarizing and hyperpolarizing changes in membrane voltage during the production of the rhythmic motor patterns underlying each stratch form. Membrane depolarization is caused by synaptic excitation (EPSPs) and gives rise to motoneurone discharge. Hyperpolarization is primarily the result of postsynaptic inhibition (IPSPs) mediated by an increased conductance of chloride ions (Cl-) and ensures motor pool quiescence during antagonist activation. 3. VP-HP motoneurones depolarized during activation of the VP-HP motor pool and hyperpolarized during activation of the HR-KF motor pool. HR-KF motoneurones depolarized during activation of the HR-KF motor pool and hyperpolarized during activation of the VP-HP motor pool. In many cases, the amplitude of hyperpolarization was directly related to the intensity of the antagonist motor pool burst. During the rostral scratch, HR-KF motor pool activity was sometimes deleted, along with the depolarizing wave in HR-KF motoneurones and the hyperpolarizing wave in VP-HP motoneurones. The interneurones providing the synaptic drive to these antagonist motoneurones appear, therefore, to have reciprocal activation patterns. 4. FT-KE motoneurones depolarized during FT-KE motor pool activation and hyperpolarized during FT-KE motor pool quiescence. This alternation of opposing synaptic drive underlies the rhythmic activation of the FT-KE motor pool during all scratch forms.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]