These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Load-velocity relationship of the deadlift exercise.
    Author: Morán-Navarro R, Martínez-Cava A, Escribano-Peñas P, Courel-Ibáñez J.
    Journal: Eur J Sport Sci; 2021 May; 21(5):678-684. PubMed ID: 32552373.
    Abstract:
    Velocity-based training (VBT) is gaining popularity in strength and conditioning due to multiple practical advantages for auto-regulating and individualizing training volume and load on a day-to-day basis. Because the load-velocity relationship varies among exercises, the knowledge of particular equations is indispensable to effectively implement the VBT. The aim of this study was to determine the complete load- and power-velocity profile of the deadlift exercise to provide practical equations and normative values for resistance training coaches and practitioners. Twenty strength-trained men performed a progressive loading test at maximal intended velocity to determine their one-repetition maximum (1RM). Mean (MV), mean propulsive (MPV) and peak velocity (PV) were measured during the concentric phase. Both MV and MPV showed a very close relationship to %1RM (R2 = 0.971 and R2 = 0.963) with a low error of estimation (SEE = 0.08 and 0.09 m·s-1), which was maintained throughout the wide breadth of velocities. PV showed the poorest results (R2 = 0.958, SEE = 0.15 m·s-1). MV attained with the 1RM was 0.24 ± 0.03 m·s-1 and consistent between participants with different relative strengths. The load that maximized the power output was identified at ∼60% 1RM. In contrast to what was observed in velocity, power outcomes showed poor predictive capacity to estimate %1RM. Hence, the use of velocity-based equations is advisable to monitor athletes' performance and adjust the training load in the deadlift exercise. This finding provides an alternative to the demanding, time-consuming and interfering 1RM tests, and allows the use of the deadlift exercise following the VBT principles.
    [Abstract] [Full Text] [Related] [New Search]