These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Accumulation of potentially toxic elements in agricultural soil and scenario analysis of cadmium inputs by fertilization: A case study in Quzhou county. Author: Zhuang Z, Mu HY, Fu PN, Wan YN, Yu Y, Wang Q, Li HF. Journal: J Environ Manage; 2020 Sep 01; 269():110797. PubMed ID: 32561006. Abstract: Fertilizer application has greatly increased crop yield, however impurities in mineral or organic fertilizers, such as heavy metals, are being added to agricultural soils, which would pose a high risk for soil and crop production. 115 soil samples were collected from Quzhou, a typical agricultural county in the North China Plain, to investigate the total content of cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), copper (Cu), zinc (Zn) and chromium (Cr) in soils. The contamination levels and source apportionment of studied elements were explored by the pollution indices, multivariate statistical approaches and geostatistical analysis. The ranges of Cd, As, Pb, Ni, Cu, Zn and Cr were between 0.08 and 0.35, 5.34-15.9, 7.34-38.9, 12.9-61.3, 7.80-27.0, 31.4-154, and 17.0-50.5 mg/kg and with the mean values 0.16, 9.20, 16.0, 24.7, 17.6, 61.1, and 29.5 mg/kg, respectively. The studied area was slightly polluted mainly by Cd, and higher pollution was found in soils under vegetable crops. The application of mineral phosphate fertilizer and livestock manure were the main source of Cd and Zn, and other elements (As, Pb, Ni and Cu) might originate from soil parent materials. Scenario analyses were performed using the R programming language, based on the cadmium contents in mineral phosphate fertilizers and livestock manures. The results showed that the long-term application of phosphate fertilizers would lead to some Cd enrichment in soil without risk of substantial pollution. Compared to pure mineral fertilizers, the long-term application of blended fertilizers (30% livestock manures and 70% phosphate fertilizers) or livestock manures would incur a higher Cd pollution risk within a short period, with a maximum probability of Cd risk of 55.21%. Mitigation measurements and scientific agronomic practices should be developed to minimize the risk of potential toxic elements in agricultural soil.[Abstract] [Full Text] [Related] [New Search]