These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New insights on the influence of free d-aspartate metabolism in the mammalian brain during prenatal and postnatal life. Author: Errico F, Cuomo M, Canu N, Caputo V, Usiello A. Journal: Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140471. PubMed ID: 32561430. Abstract: Free d-aspartate is abundant in the mammalian embryonic brain. However, following the postnatal onset of the catabolic d-aspartate oxidase (DDO) activity, cerebral d-aspartate levels drastically decrease, remaining constantly low throughout life. d-Aspartate stimulates both glutamatergic NMDA receptors (NMDARs) and metabotropic Glu5 receptors. In rodents, short-term d-aspartate exposure increases spine density and synaptic plasticity, and improves cognition. Conversely, persistently high d-Asp levels produce NMDAR-dependent neurotoxic effects, leading to precocious neuroinflammation and cell death. These pieces of evidence highlight the dichotomous impact of d-aspartate signaling on NMDAR-dependent processes and, in turn, unveil a neuroprotective role for DDO in preventing the detrimental effects of excessive d-aspartate stimulation during aging. Here, we will focus on the in vivo influence of altered d-aspartate metabolism on the modulation of glutamatergic functions and its involvement in translational studies. Finally, preliminary data on the role of embryonic d-aspartate in the mouse brain will also be reviewed.[Abstract] [Full Text] [Related] [New Search]