These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: By targeting TRAF6, miR-140-3p inhibits TGF-β1-induced human osteosarcoma epithelial-to-mesenchymal transition, migration, and invasion.
    Author: Guo Q, Zhang N, Liu S, Pang Z, Chen Z.
    Journal: Biotechnol Lett; 2020 Nov; 42(11):2123-2133. PubMed ID: 32562135.
    Abstract:
    OBJECTIVES: We evaluated the effects of miR-140-3p on EMT, cellular migration, and invasion in TGF-β1 treated human OS cells. Human fresh OS tissue and normal bone tissue specimens were gathered from 42 patients (29 male and 13 female, 11 to 24 years of age with a mean age of 17.5 ± 2.3 years) diagnosed with OS by pathology. By targeting TRAF6, miR-140-3p inhibits TGF-β1-induced human osteosarcoma epithelial-to-mesenchymal transition, migration, and invasion. RESULTS: In this study, we found microRNA (miR)-140-3p to be down-regulated and tumor necrosis factor receptor-associated factor 6 (TRAF6) to be up-regulated in patient OS samples. Lower levels of miR-140-3p and higher levels of TRAF6 were found in the advanced Enneking stage of OS. Furthermore, both mRNA and protein levels of TRAF6 were negatively associated with miR-140-3p mRNA expression in human OS tissue. TRAF6 was verified as a direct target of miR-140-3p in TGF-β1-treated human U2OS cells. Further, a miR-140-3p mimic dramatically inhibited while a miR-140-3p inhibitor enhanced TGF-β1-induced epithelial-to-mesenchymal transition, migration, and invasion of U2OS cells. Small interfering RNA was found to silence TRAF6 and to partly reverse the effects of the miR-140-3p inhibitor on TGF-β1-treated U2OS cells in vitro. CONCLUSION: These results demonstrate miR-140-3p to function as a tumor inhibitor of human OS cells by decreasing TRAF6 expression. miR-140-3p and TRAF6 may be valuable and novel biomarkers for diagnosis and treatment of OS.
    [Abstract] [Full Text] [Related] [New Search]