These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Excitatory postsynaptic currents in response to different synaptic inputs of frog spinal motoneurons.
    Author: Kuno M, Yasunami T, Matsuura S.
    Journal: Neurosci Res; 1988 Feb; 5(3):240-52. PubMed ID: 3258652.
    Abstract:
    Excitatory postsynaptic currents (EPSCs) evoked by the primary afferents (dorsal root; DR) and the descending lateral column (LC) fibers were studied in frog spinal motoneurons under voltage clamp with two separate electrodes. The average rise time and half-width of the EPSCs were shorter for LC-EPSCs than for DR-EPSCs, though the values of the parameters for LC- and DR-EPSCs were distributed within a similar range. The relation between the amplitudes of the EPSP and EPSC was almost linear. The amount of current required to generate a 1 mV increment in the EPSP was 5.0 +/- 2.3 nA for the DR-EPSC and 3.8 +/- 1.2 nA for the LC-EPSC. The decay time was shortened by hyperpolarization and prolonged by depolarization in DR- and LC-EPSCs and spontaneous EPSCs. The reversal potential ranged from -30 to -5 mV and was almost identical for DR- and LC-EPSCs and spontaneous EPSCs in individual motoneurons. The current-voltage relation was linear from -100 to +50 mV for these EPSCs. Spontaneous EPSCs became more prominent and frequent during a large hyperpolarization or a large depolarization. These results suggest that the ionic mechanisms underlying EPSC are similar for the functionally different excitatory synapses located on motoneurons.
    [Abstract] [Full Text] [Related] [New Search]