These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of Synthetic Hydroxyapatite Fibers Using High-Resolution, Polarized Raman Spectroscopy. Author: Shah FA. Journal: Appl Spectrosc; 2021 Apr; 75(4):475-479. PubMed ID: 32588640. Abstract: In the Raman spectrum of B-type carbonated apatites, the ν1 CO32- mode (at ∼1070 cm-1) overlaps the ν3 PO43- band. The latter is readily observed where the CO32- content is low (up to ∼3 wt%). The CO32- content of bone is considerably higher (∼7-9 wt%). As a result, the ν3 PO43- band becomes completely obscured. The 1000-1100 cm-1 spectral range of carbonated apatite is frequently considered a combined ν3 PO43- and ν1 CO32- region. Here, high-resolution polarized Raman spectroscopy (step size of 0.74 ± 0.04 cm-1) provides new insights into synthetic hydroxyapatite (HAp) obtained as micrometer-sized fibers. Compared to bone mineral (deproteinized bovine bone), spectral features of HAp fibers are highly resolved. In particular, the ν3 PO43- band resolves into nine distinct sub-components: 1028, 1032, 1040, 1043, 1047, 1053, 1055, 1062, and 1076 cm-1. Parameters including full width half-maximum, intensity, area fraction, intensity ratio, and area fraction ratio vary between parallel and perpendicular polarized configurations. It is likely that the ν1 CO32- band of B-type carbonated apatites may contain a small but not insignificant contribution from the 1076 cm-1 sub-component of the ν3 PO43- band. Furthermore, the 1076 cm-1/1047 cm-1 ratio changes between parallel and perpendicular scattering configurations, suggesting that the contribution of the 1076 cm-1 sub-component may vary as a function of local orientation of bone mineral, thus skewing the ν1 CO32- band and compromising accurate estimation of carbonate-to-phosphate ratios in B-type CO32- substituted apatite.[Abstract] [Full Text] [Related] [New Search]