These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photocatalytic degradation and rate constant prediction of chlorophenols and bisphenols by H3PW12O40/GR/TiO2 composite membrane. Author: Ma Y, Zhang Y, Zhu X, Lu N, Li C, Yuan X, Qu J. Journal: Environ Res; 2020 Sep; 188():109786. PubMed ID: 32593897. Abstract: Photocatalysis is a promising approach to remove highly toxic and refractory aromatics pollutants. However, developing highly active photocatalyst is a long-standing challenge for pollutant degradation. This study addressed this challenge by developing GR (graphene)/TiO2 and HPW (H3PW12O40)/GR/TiO2 membranes by sol-gel method. The removal efficiencies of HPW/GR/TiO2 (the doping of 1.0% HPW) membrane for chlorophenols (including o-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol) and bisphenols (such as Bisphenol A, Bisphenol AP, Bisphenol AF, and Bisphenol S) were up to 97.02-82.71% and 93.28-68.63% with simulated sunlight radiation for 5 h, respectively. Compared with GR/TiO2 composite membrane, HPW/GR/TiO2 remarkably accelerated the formation rates of O2- and OH, due to the simultaneous transfer of photo-generated electrons (generated by TiO2) to GR and HPW. In addition, the activity of the HPW/GR/TiO2 membrane did not decline noticeably after 10-time recycle. Furthermore, the photocatalytic degradation reaction rate constants (k) of phenols by HPW/GR/TiO2 membrane were calculated, and those for other chlorophenols and bisphenols were predicted using a quantitative structure-activity relationship model. The HPW/GR/TiO2 membrane developed in this study poses high potential as an ideal photocatalyst for removal of phenolic pollutants in wastewater.[Abstract] [Full Text] [Related] [New Search]