These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Pt(IV)-based mononitro-naphthalimide conjugate with minimized side-effects targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance.
    Author: Li Y, Yue K, Li L, Niu J, Liu H, Ma J, Xie S.
    Journal: Bioorg Chem; 2020 Aug; 101():104011. PubMed ID: 32599363.
    Abstract:
    Platinum(Pt)(II) drugs and new Pt(IV) agents behave the dysregulation of apoptosis as the result of DNA damage repair and thus, are less effective in the treatment of resistant tumors. Herein, mononitro-naphthalimide Pt(IV) complex 10b with minimized side-effects was reported targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. 10b displayed remarkably evaluated antitumor (70.10%) activities in vivo compared to that of cisplatin (52.88%). The highest fold increase (FI) (5.08) for A549cisR cells and the lowest (0.72) for A549 indicated 10b preferentially accumulated in resistant cell lines. The possible molecular mechanism indicates that 10b targets resistant cells in a totally different way from the existing Pt drugs. The cell accumulation and the Pt levels in genomic DNA from 10b is almost 5 folds higher than that of cisplatin and oxaliplatin, indicating the naphthalimide moiety in 10b exhibits preferentially DNA damage. Using 5'-dGMP as a DNA model, the DNA-binding properties of 10b (1 mM) with 5'-dGMP (3 mM) in the presence of ascorbic acid (5 mM) deduced that 10b was generated by the combination of cisplatin with 5'-dGMP after reduction by ascorbic acid. Moreover, 10b promoted the expression of p53 gene and protein more effectively than cisplatin, leading to the increased anticancer activity. The up-regulated γH2A.X and down-regulated RAD51 indicates that 10b not only induced severe DNA damage but also inhibited the DNA damage repair, thus resulting in its higher cytotoxicity in comparison to that of cisplatin. Their preferential accumulation in cancer cells (SMMC-7721) compared to the matched normal cells (HL-7702 cells) demonstrated that they were potentially safe for clinical therapeutic use. In addition, the higher therapeutic indices of 10b for 4T1 cells in vivo indicated that naphthalimide-Pt(IV) conjugates behaved a vital function in the treatment of breast cancer. For the first time, our study implies a significant strategy for Pt drugs to treat resistance cancer targeting DNA damage repair via dual DNA damage mechanism in a totally new field.
    [Abstract] [Full Text] [Related] [New Search]