These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes composite for theranostic 47Sc separation from neutron irradiated titanium target. Author: Gizawy MA, Shamsel-Din HA, Abdelmonem IM, Ibrahim MIA, Mohamed LA, Metwally E. Journal: Int J Biol Macromol; 2020 Nov 15; 163():79-86. PubMed ID: 32603728. Abstract: A simple and efficient separation method of carrier-free 47Sc from neutron irradiated titanium target using a novel chitosan-acrylic acid/multiwalled carbon nanotubes (CS-AA/MWCNTs) composite was established. The synthesis of the CS-AA/MWCNTs composite was achieved using gamma radiation-induced template polymerization. The grafting efficiency (GE%) of AA on CS onto the surface of f-MWCNTs reached a maximum of~84% under the optimized conditions (30 wt% CS, 1.0 wt% AA, 0.15 wt% f-MWCNTs, >0.2 wt% N,N'-Methylenebisacrylamide (NMBA), and irradiation dose ~25 kGy). Different analyses (FT-IR, SEM, TGA and DTA) were examined for confirming the structural morphology and mechanical properties of the new synthesized composite. Interestingly, the CS-AA/MWCNTs composite depicted a selective adsorption of Sc(III) rather than Ti(IV) ions at pH 5 with adsorption efficiency of ~93.93%. The ionic exchange separation of no-carrier-added (NCA)47Sc(III) from irradiated TiO2 target on CS-AA/MWCNTs composite packed column efficiently eluted 47Sc(III) by 91 ± 0.8% using 1 M HCl solution. The quality control tests (radionuclidic, radiochemical, and chemical purities) for the eluted 47Sc(III) clarified its high purity and validity for cancer theranostics.[Abstract] [Full Text] [Related] [New Search]