These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Females as the Gatekeepers to Seasonal Breeding: What We Can Learn by Studying Reproductive Mechanisms in Both Sexes. Author: Kimmitt AA. Journal: Integr Comp Biol; 2020 Sep 01; 60(3):703-711. PubMed ID: 32617554. Abstract: Seasonal reproduction is a widespread adaptation in vertebrates, such that individuals time their reproductive efforts to match peak resource abundance. Individuals rely on environmental cues to regulate hormonal mechanisms governing timing of breeding. Historically, studies on physiological mechanisms of seasonal reproduction, specifically in birds, have disproportionately focused on males compared to females. For this review, I conducted a literature search of the last decade of avian research and found a persistent sex bias in the field of physiological mechanisms of seasonal reproduction. Using work conducted with the dark-eyed junco (Junco hyemalis) as a case study, I present a possible solution to combat the sex bias: natural comparisons of populations that differ in reproductive timing to investigate mechanisms of reproduction in both sexes. Populations of dark-eyed juncos that differ in migratory behavior (i.e., migrant and resident) exhibit overlapping ranges during winter and early spring; residents begin breeding in early spring prior to the departure of migrants. This system, and others like it, provides an opportunity to compare mechanisms of reproduction in populations that differ in reproductive timing despite experiencing the same environmental conditions in early spring. In juncos, migrant and resident females and males exhibit similar patterns of hypothalamic regulation of reproduction in early spring, but sex differences in gonadal sensitivity between the populations could be an important distinction that partially explains sex differences in reproductive development. Comparing mechanisms of reproduction in free-living populations and in captivity can reveal important mechanisms that determine the onset of reproductive development, as well as potential sex differences in these mechanisms. Understanding the mechanisms of reproductive phenology has important implications for understanding how species will survive and reproduce in a changing climate.[Abstract] [Full Text] [Related] [New Search]